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Abstract

The equation for the evolution of the density distribution and its two phase-space
point correlation for nonlinear oscillators under the inflence of an external random driv-
ing force are derived. The normal Fokker-Planck description is shown to be applicable
to the average distribution. Small-amplitude and short-wavelength spatial fluctuations
of density (“microstructure”) are found to be the special effect of the random-driving,
distinguishing it from incoherent noise. These density fluctuations are analyzed using
the correlation function formalism.

1 Introduction

The influence of random forces on nonlinear oscillators is a common problem in the random
processes theory, with many applications in all fields of science. For an individual particle
experiencing a randomly applied force, the resulting particle motion has the characteristics
of the Brownian motion (see, e.g. /1/). Assuming that the probability function of finding
a particle in the phase space is independent of the initial phase space coordinates (Marko-
vian process), the evolution equation of the particle distribution function is reduced to the
Fokker-Planck equation. A similar but not identical problem is the effect of rf noise in high
energy particle accelerators, where the dynamics of the particle distribution is equivalent to
that of a nonlinear oscillator driven by the random statistically independent force, which is
the same for all particles. Thus, one confronts a somewhat unusual problem of a random
coherent driving force. It can be shown, however, that the average (over the ensemble of
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driving forces) distribution function satisfies the Fokker-Planck evolution equation which
appears when each particle is affected independently (incoherent noise). Many extensive
studies have been published (see /2-4/), where the Fokker-Planck equation was analyzed
and solved using the averaging techiques in the small noise/fast oscillation regime. Due to
the nonlinearity of the Hamiltonian system, the diffusion coefficients can be expressed in
terms of the noise power spectrum at multiples of the oscillation frequency. The theory
has been verified by numerical simulations /4/ and has also been cofirmed by experimental
observations /5/. Indeed, for a small amplitude driving force, the response of the nonlinear
oscillator concentrates mainly around the harmonics of this force at the frequency of these
oscillations. The important point is that the amplitudes at different harmonic frequencies
of the same, sufficiently long section of random signal, are statistically independent. Thus,
to the zeroth order approximation, the coherently random driving force and the Brownian
motion with statistically independent random forces produce the same results.

Beyond the zeroth order approximation, how do the individual density distributions
differ from the average one? Will the density fluctuations be smoothed out by the random
noise? What is the effect of the nonlinearity on fluctuations? In the present paper, we
address these questions by studying the fluctuations in the ensemble of density distributions,
which can be described by the correlation function in both phase space and time. We study
the spatial spectrum of the fluctuations (same-time correlation function) in the limit of
small noise/ large nonlinearity.

The plan of the paper is as follows. A model of a nonlinear oscillator with coherent
driving force is introduced. After defining the correlation function, we obtain the self-
contained description of fluctuations by deriving the evolution equation for the correlator.
A solution of this evolution equation in the limit of small noise/fast oscillations is discussed
in section 4. The conclusion is given in section 5.

2 Model.

We consider the general form of the Hamiltonian of nonlinear oscillator with a random
driving force,

2
H =% 4 g(0) + na)(0) (1)

where g(g) is an arbitrary nonlinear potential and £(t) is for simplicity, yet without loss of
generality, chosen to be the white noise, i.e.

(£(1)e() = 8(z - t'). (2)

In the absence of particle interactions {or collisions), the evolution of the density distribution
is governed by the Vlasov equation:
of (Bg oh (t)) af  of
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The statistical properties of the fluctuating quantity f are appropriately defined by the
ensemble average of the distribution function,

F(p,0,t) = (f(p. 0, 1)) (4)
and the correlation function of the density fluctuations in adjacent phase space points,
K(p0:5,8:1) = (f(pr 2}~ F(2, ¢, NS (5,0, 8) = (B 0 )} - (5)

We limit ourselves by considering only the same-time correlator K and study therefore only
the spatial, but not the time, correlation properties of the fluctuations.

Hereafter, we use the action-angle variables J, ¥ of the unperturbed (A(g) = 0) Hamil-
tonian (1), which will be assumed to be known, to analyze these evolution equations. The
perturbed Hamiltonian H in these variables has the form:

H = Ho(J) + V(J, ¥)E(2) (6)
where V(J, ¥) = h(q(J, ¥)) and Ho(J) are known functions.

3 Evolution equations.

Both the average density f and the correlator K are evolving in time. We will derive the
evolution equations for both quantities using basically the conventional techniques of the
theory of stochastic differential equations /1/. It had been shown previously /2-4/ that
the evolution of the average density obeys the Fokker-Planck equation. However, to the
authors’ knowledge, the evolution of the density fluctuations has never been studied.

In the action-angle variables, the average density and the correlator are given by: f =
f(J,9,t)and K = K(J,¥,J, ¥, t) We will also use the notation ¥ = ¥+ and compressed
notations for the phase space coordinates : (1) = zy; = (J,¥) and (2) = zo; = (J, ¥).
Taking the differentially small time increment At, one obtains the derivatives of the average

density,
5‘f(1) im 21
= Am A 0
and the correlator,
8K
51 = Am Om (AF(F2N + (FASF(2) + (ASF(DAS(2)) (8)

- FA)AS@) - FUAS)) - (AF(NAFD))),

where the increment of the density Af = f(¢ + At) — £(¢) can be expressed, due to the
conservation of the phase-space density, as

d 1 2
Af = —a—fAz +26m;k/_\x Azy, {(9)
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where a summation over repeating indices is assumed. The increments of the phase-space
variables Az; in time At can be obtained from the stochastic equations of motion. The
second order terms in Az were kept because of the properties of the white noise, where the
average of quadratic terms Az;Az; produces terms linear in At.

Substituting equation (9) into equation (8) and making ensemble averages, one finds
that the averages of products of z’s and f’s are factorizable, i.e.

@arwy = (s (LY + L l,mlk)<5%%>, (10)
(AFAS@) = (Aaubseq) (LU (1)

etc. This is due to the fact that the increments Az; depend on the noise £(¢) only in the
time range between ¢ and ¢4 At. One obtains then the evolution equations for the moments
of the density in the form:

af _ . 1 i o*f

o Aht[—[»loAt {(Axl'>8x1,+2(A£1'Axlk)3$1i3931k (12)
K .1 dK oK 1 *K
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K _ af(1)Af(2) *K
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The moments of Az’s that are present in equations (12) and (13) can be computed
quite straightforwardly by using the conventional techniques from the theory of stochastic
differential equations. The details of this calculation are given in the Appendix. The
evolution equation for the average f after the substitution of the moments (A4) becomes
the conventional Fokker-Planck equation:

F 2 2 2 2 F
of _ [l(av v 6V6V)+w(J)]8f (avav 9%V BV)Bf

ot aJjov aJ ~ 8J? ov v 2\ 9vTaJ ~ dvaJov ) a7
(@ 2T, Loy ey vy o )
2\aJ) 0¥ " 2\9%/ 8JF 9V 8J §vaJ (
where V = V(J, ¥). For the correlator K, one obtains an evolution equation that is coupled
to the mean f:
(9K 92V ov ?EKB_V + () K 32V£5‘£ v oV oK
aJ3Y¥ 8J ~ 98J% 9V oY " 2\ovZaJ  9vaTav ) aJ
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1{ 8V av 9V ev J oK 1 [8Vev 9V af/) K
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0J 9% 0¥ 8] 8T 9j 9Y ¥
where V = V(J, ¥).

4 Small noise / fast oscillation regime,

4.1 Averaged evolution equations.

On a long time scale, and in the small noise / fast oscillations regime, one can average the
dependence of all quantities along the unperturbed trajectories J = const, ¥ = w(J)t. This
approximation is well known under the name of “averaging of fast-oscillating variables” in
the theory of Fokker-Planck equations (see, e.g. /1/), and was also used in previous studies
of the average density diffusion /2-4/. For the Fokker-Planck equation (14), the procedure
is technically very simple. One assumes that the density f is independent of ¥ by taking
both the averages over £ and ¥ (with the double average notation {{...))) for all coefficients.
The resulting averaged Fokker-Planck equation becomes the well known diffusion equation

/ 2'4/ ’

ﬁf__ i} of
where the diffusion intensity Dy is given by (see Appendix for details),
_ 1 (An?, 1 21cr 12
DiJ) = UGN = 5 Tl (1)

where V,, are the harmonic amplitudes in the Fourier expansion of V in the 27 periodic
variable ¥.

The implementation of the same small noise and fast oscillations approximation in the
evolution equation (15) for the correlator is somewhat more subtle. We will postulate at
this point (and confirm it by the final results) that the correlator K does not depend on the
phase ¥ but retains the dependence on the phase difference ¢ = ¥ — ¥. The procedure for
the evolution equation derivatition then parallels that for the Fokker-Planck equation: one
adds an extra averaging in ¥ in all moments in equation (13) while retaining a dependence

5



on ¢, and assumes K to depend on the phases ¥ and ¥ only through the combination
¢ = ¥ — V. Using the moments calculated in the Appendix in the formulas (A6) and (A7),
one obtains thus:

oK 3 oK d
5 = (- "’(J)) t a7 (DJ(J) ) aJ( J(J) )
2 () Of(T) | 9K
(D@(J)-I'DW(J)) 7+ Fi,J, )( 07 87 +6J6f)
+F-v(Jaj13°)§£" e

where the functions Dy, Fj, Iy appear from the moments in (A6), (AT):

Dy = 12[3%
n

Fiy(J,J,9) = anVn(JW-n(f)ei’“’ (19)

BV, (J) OV_n(J)
P Y

tmp

F‘P(J’ja‘P) =

4.2 Asymptotic solution for the correlator.

In the absence of noise, the solution of equation (18) for the correlator is trivial as only the
first term in the r.h.s. survives. The correlation “decays” or rather deccheres due to the
phase-mixing. The general solution is an a,rbltra,ry function of ¢ + (w(J) — w(J))t. The
time scale of decoherence is 7 ~ 1/Ag, where A = §% and o is the r.m.s. value of J for the
distribution f. In the presence of small noise, when the diffusion coefficient is Dy ~ |V|?,
the characterictic diffusion time is 75 ~ -5—1. In the limit of small noise, we expect that
the decoherence time is much shorter than the diffusion time. Furthermore, the correlation
“injection”, that is provided by the inhomogeneous term in equation (18), varies only on the
slow time scale of diffusion. As a result, a quasistationary equilibrium correlation density
will be established that is a balance between the slowly changing “injection” of correlations
and their fast decay.

To analyze the quasistationary solution, we drop the time derivative of K in equation
(18). Another simplification comes from noticing that the correlator K is the largest at a
small spatial scale ¢ = J — J, where the “decoherence” term {first term in the r.h.s. of
equation (18)) is small. Expanding all the coefficients in the equation (18) to the leading
order in ¢ and keeping only the dominant derivatives in ¢ yields:

2
Aq‘; + DJ%‘;( + > R,e™ =0 (20)
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2
where the quantities A = é%gﬂ, Dj = Dj(J)and R, = n?|V,(J)}? (Q'g}l) depend on J as
a parameter. For the nonzero harmonics of K in ¢ one obtains:

2

in)\qI(n+DJaT;t-£ﬁ+an0, (21)

where the solution of this equation is given by the Airy functions [6]. For the power spectrum

of the fluctuations K, = 5= [ dq K,.(¢q)e'*? the resulting equation is of the first order:

n,\%. — DJK*K,, 4+ R,8(k) =0 (22)

and allows an explicit solution:

—%}exp (%ka) , ifnkA <0,
0, otherwise.

K;n(k) = { (23)

This is the central result of our analysis. The “correlation radius “ of fluctuations ¢, (the
1/3
inverse characteristic wavelength) is seen from this formula to be ¢, ~ (F%%[) /

A special feature of the spectrum of Eq. (23) is its discontinuity. It is easy to see that
this discontinuity is the manifestation of the long ~ 1/|q| “tail” of the correlator K. Indeed,
for large |g| > g, the second term in Eq. (21) becomes much smaller than the first, and
one obtains 1/|¢| tail. It is possible to obtain a more general expression for the “tail” of K
for |¢| > ¢. that is not limited by the condition |¢| <« J by keeping the same terms of the
primary evolution Eq. (18) (i.e. the first term in the r.h.s. and the inhomogeneous term)
without expanding in ¢g. The resulting expression for the “tail” is;

Va(Va(J) 8f(J,1) f(J,1)

K“(J’J’t)zn(w(.f)—u(j)) 3l aJ

(24)

The most important quantity characterizing the fluctuations is their intensity, which is
the value of the correlator K at ¢ = 0, and can be calculated by integrating the spectrum
K. The resulting intensities P, = K,(0) are:
)

(RA(J}P/2D /()

(25)

Thus, the fluctuation intensities are of the order P, ~ (D_;/,\)g‘f3 and will be small for small
noise /large nonlinearity.

5 Conclusions.

We presented the evolution equation formalism for the same-time correlation function of
the density distribution fluctuations in the phase space of a nonlinear oscillator under the



influnce of coherent (same for all particles) random driving. For the weak noise/ large
nonlinearity of oscillations the fluctuations are small and short-ranged in the energy of
oscillations. The fluctuations present themselves as a small “microstructure” on top of a
smooth mean distribution function. The mechanism for the loss of correlations is related to
the phase-mixing (“decoherence”) of density perturbations due to the amplitude-dependent
frequency of oscillations. This is not a truly dissipative mechanism, resulting in correlations
that indicate a long “memory” of the system as demonstrated by a long ~ 1/¢ tail for the
correlator in the energy difference gq.
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APPENDIX A

In this Appendix, we calculate the moments of Az’s that enter the evolution equations (12)
and (13) by employing the conventional methods of stochastic differential equations /1/.
We start with using the Hamiltonian equations of motion for the Hamiltonian (6) to present
the increments AJ and AV in the form:

AV = L«J(J)At + A"I’] + A‘I’g
A = AL +AL (A1)
where AJy, AV, are the first-order terms:
IV [t+At

A = —— dt’ £t

1 v J, (1)

oV i+t

Al = — di’ £(t'
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and AJz, AU, are the second-order ones:

_ [(evav v av pear ew
ALz = "(WW'_"“BMM_\B)/, a [ at ere)

( 9V av 9V oV

t+At t
— e — - 4 ! 1 ! "
A, 5755 37 — 373 M)/t at' [ at " e (A3)

Averaging over the é-correlated random process £ yields then the following expressions for
the same-point moments of Az’s (no mixing of 1 and 2 variables) :

AJ) = (AR =-2 (6“’V6V it av)

7 \av 97 ~ 2ua7 0%
At [ 3*V 8V 8 oV
(B¥) = W)L+ (a¥s) =w()AL+ 5 (aJawEf" FXE 53)
2 9 V2
(@) = @ =ar(5) (A4)
avy?2
(av7) = (avh=ae(57)
(AJAY) = (ALAY) = —A Y IV

v oJ

and for the different-point moments:

(AJAF) = <AJ1M1)=A1:Z_¥%
(AJA®Y = (AJIA"W,}:—A:&%%?
(AVATY = (Awiafg:-m%?% (A5)
(AVAY) = (Awlaifl):m%‘}%%

In the latter expressions, we used the notations V = V(J,¥) and V = V({J, v).

In the small noise/ fast oscillations approximation, the moments have to be averaged
over the phase ¥ while keeping the dependence on the phase difference p = ¥ — . Using
the Fourier series V(J,¥) = 3= V.(J)e™¥, one obtains:

(agy = %Atz nz—%—

(AT = w(J)At
{(ant)y = aty nl|v,.) (A6)
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2

(v = ary|F
(ATAYY) = 0

Note here that the relation ((AJ)) = L Z{{(AJ)?)) was verified experimentally /5/ and
was proven in general for all Hamiltonian system with random noise /2,3/. Similarly, the
phase averaging for the different-point moments yields the expressions:

(aJad)) = At)_ nPV,V_ e

{AJA¥Y) = 0

{ATATY = 0 (AT)
((AVAWY)) = Atzi};‘%ﬁef“w.

10



